Short-term Traffic Forecasting Based on Grey Neural Network with Particle Swarm Optimization

نویسندگان

  • Yuanyuan Pan
  • Yongdong Shi
چکیده

An accurate and stable short-term traffic forecasting model is very important for intelligent transportation systems (ITS). The forecasting results can be used to relieve traffic congestion and improve the mobility of transportation. This paper proposes a new hybrid model of grey system theory and neural networks with particle swarm optimization, namely, GNN-PSO. The proposed hybrid model can exploit sufficiently the characteristics of grey system model requiring less data, the non-linear map of neural networks and the quick-speed convergence of PSO, and has simpler structure. The GNNPSO model is applied to predict the average speed of vehicle on Barbosa road in Macao. The experiment results show that the proposed model has better performance than grey forecasting model GM(1,1), back-propagation neural network model BPNN, and the combined model of them, i.e., grey neural network model (GNN), on short-term traffic forecasting.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Telephone Traffic Forecasting Based on Grey Neural Network Optimized by Improved Particle Swarm Optimization Algorithm

To solve the problem that the parameters in grey neural network (GNN) are difficult to determine, the improved Particle Swarm Optimization (IPSO) algorithm is employed to search the optimums by the introduction of a threshold of velocity. When the particle velocity is less than the threshold, an accelerated momentum is applied on the particle to reinitialize the particle velocity and position. ...

متن کامل

Prediction for Short-term Traffic Flow Based on Optimized Wavelet Neural Network Model

Short term traffic forecasting has been a very important consideration in many areas of transportation research for more than 3 decades. Short-term traffic forecasting based on data driven methods is one of the most dynamic and developing research arenas with enormous published literature. In order to improve forecasting model accuracy of wavelet neural network, an adaptive particle swarm optim...

متن کامل

A Short-Term Load Forecasting Model with a Modified Particle Swarm Optimization Algorithm and Least Squares Support Vector Machine Based on the Denoising Method of Empirical Mode Decomposition and Grey Relational Analysis

As an important part of power system planning and the basis of economic operation of power systems, the main work of power load forecasting is to predict the time distribution and spatial distribution of future power loads. The accuracy of load forecasting will directly influence the reliability of the power system. In this paper, a novel short-term Empirical Mode Decomposition-Grey Relational ...

متن کامل

Traffic Signal Prediction Using Elman Neural Network and Particle Swarm Optimization

Prediction of traffic is very crucial for its management. Because of human involvement in the generation of this phenomenon, traffic signal is normally accompanied by noise and high levels of non-stationarity. Therefore, traffic signal prediction as one of the important subjects of study has attracted researchers’ interests. In this study, a combinatorial approach is proposed for traffic signal...

متن کامل

Short-Term Wind Power Forecasting Using the Enhanced Particle Swarm Optimization Based Hybrid Method

High penetration of wind power in the electricity system provides many challenges to power system operators, mainly due to the unpredictability and variability of wind power generation. Although wind energy may not be dispatched, an accurate forecasting method of wind speed and power generation can help power system operators reduce the risk of an unreliable electricity supply. This paper propo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016